GCSE → A Level transition

Teacher sheet

GCSE → A Level Biology transition

Answers to maths skills practice questions

1 Numbers and units

```
1 a 1 kJ = 1000 J, so 4 500 000 J = 4 500 000/1000 kJ = 4500 kJ b 1 MJ = 1000 kJ, so 4500 kJ = 4.5 MJ
```

2 1 m = 10^9 nm (there are a billion nanometre in a metre)

$$9.0 \times 10^{-8} \text{ m} = 9.0 \times 10^{-8} \times 10^{9} \text{ nm} = 9.0 \times 10^{-8+9} \text{ nm} = 9.0 \times 10 \text{ nm} = 90 \text{ nm}$$

$$1.20 \times 10^{-7} \,\mathrm{m} = 1.20 \times 10^{-7} \times 10^{9} \,\mathrm{nm} = 1.20 \times 10^{-7+9} \,\mathrm{nm} = 1.20 \times 100 \,\mathrm{nm} = 120 \,\mathrm{nm}$$

Range = 90 nm to 120 nm

3 **a** 10¹¹ **b** 10¹²

c 1000 + 1000 = 2000 **d** 100 - 0.01 = 99.99

4 **a** 10¹ or 10 **b** 10⁻³ or 0.001

c 10^6 or 100000 **d** $100^2 \div 100 = 100$ or 10^2

5 **a** 4 mm **b** 130 s

c 31 300 μl **d** 0.000 104 mg **a** 57 μm **b** 8.6 L or 8.6 dm³

c 68 s **d** 0.09 mm

2 Decimals, standard form, and significant figures

1 0.0214 cm^2 0.0218 cm^2 0.03 cm^2 0.034 cm^2

2 12.03 cm 12.901 cm 22 cm 22.003 cm 22.25 cm

3 a 3.06×10³ kJ **b** 1.4×10⁵ kg **c** 1.8×10⁻⁴ m **d** 4×10⁻⁶ m

4 **a** 1×10^2 **b** 1×10^4 **c** 1×10^{-2} **d** 2.1×10^7

5 Give the following as decimals.

a 1 000 000 **b** 4 700 000 000 **c** 1 200 000 000 000 **d** 0.000 796 6 **a** 7600 g / 7640 g **b** 28 m / 27.5 m

c 4.3 g / 4.33 g **d** $6.0 \times 10^2 \text{ m} / 5.00 \times 10^2 \text{ m}$

7 1.2×10^4 g

3 Working with formulae

1 M? I = 6.6 mm $O = 165 \mu\text{m}$ Change to same units: either both mm or both μm or both m: 165 $\mu\text{m} = 0.165 \text{ mm}$ $M = I/O = 6.6/0.165 = \times 40$

AQA Biology

GCSE → A Level transition

Teacher sheet

2 Area =
$$0.5 \times 2 \text{ cm} \times 9 \text{ cm} = 9 \text{ cm}^2$$

3 Area =
$$\pi$$
 r² = π × (0.7 μ m)² = π × (0.7 × 10⁻⁶ m) × (0.7 × 10⁻⁶ m) = 1.5 μ m²

$$4 N_0 = 24$$

$$7 \text{ days} = 7 \times 24 \text{ hours} = 168 \text{ hours}$$

so
$$n = 168 \div 20 = 8.4$$

$$D = 1 - \sum \left(\frac{n}{N}\right)^2$$

$$D = 1 - \left(\left(\frac{96}{125} \right)^2 + \left(\frac{4}{125} \right)^2 + \left(\frac{22}{125} \right)^2 + \left(\frac{3}{125} \right)^2 \right)$$

indices:
$$D = 1 - (0.768^2 + 0.032^2 + 0.176^2 + 0.024^2)$$

addition:
$$D = 1 - 0.6224 = 0.3776 = 0.38 (2.d.p)$$

6
$$O = 0.1 \text{ mm}$$
 $I = ?$ $M = 50$ $I = M \times O = 50 \times 0.1 \text{ mm} = 5 \text{ mm}$

7 Area = 5.3 cm² radius?
$$A = \pi r^2$$

$$5.3 = \pi r^2$$
 $r^2 = \frac{5.3}{\pi} = 1.687$ $r = \sqrt{1.687} = 1.3 \text{ cm}$

$$5.3 = \pi r^2$$
 $r^2 = \frac{3.3}{\pi} = 1.687$ $r = \sqrt{\frac{1.687}{1.687}} = 1.3 \text{ cm}$

Or $A = \pi r^2$ $r^2 = \frac{A}{\pi}$ $r = \sqrt{\frac{A}{\pi}}$ $r = \sqrt{\frac{5.3}{\pi}} = 1.3 \text{ cm}$

8
$$7.25 \times 10^{-6} \text{ m} (7.25 \, \mu\text{m})$$

$$a = \frac{\left(\frac{34}{100}\right) \times 135}{2} = \frac{22.95}{2}$$

10 cardiac output = stroke volume x heart rate

stroke volume =
$$\frac{2.7}{77}$$
 = 0.035 dm³

$$0.84 = \frac{\text{biomass transfer}}{25} \times 100$$

biomass transfer =
$$\frac{0.84}{100} \times 25$$
 = 0.21 kg

Rearrange the equation to give:
$$\frac{100}{100} \times \frac{23}{100} = 0.21$$

4 Magnification

AQA Biology

$GCSE \rightarrow A$ Level transition

Teacher sheet

5 Percentages and uncertainty

a $3600000 \times 100 = 0.06\%$ **b** $3600000 \times 100 = 0.013\%$

5.88%

Sucrose conc. / mol dm ⁻³	Initial mass / g	Final mass / g	Mass change / g	Percentage change in mass
0.9	1.79	1.06	-0.73	-40.8%
0.7	1.86	1.30	-0.56	-30.1%
0.5	1.95	1.70	-0.25	-12.8%
0.3	1.63	1.76	+0.13	+8.0%
0.1	1.82	2.55	+0.73	+40.1%

c 0.05 °C **a** 1 cm³ **b** 0.005 s

5

Measurement made	Equipment used	Absolute error	Relative error
Length of a fluid column in a respirometer is 6 mm	mm scale	0.5 mm	$\frac{0.5}{6} \times 100 = 8.3\%$
Volume of a syringe is 12 cm ³ of liquid	0.5 cm ³ divisions	0.25 cm ³	$\frac{0.25}{12} \times 100 = 2.1\%$
Change in mass of 1.6 g	balance with 2 d.p.	0.005 g	$\frac{0.005 \times 2}{1.6} \times 100 = 0.6\%$

GCSE → A Level transition

Teacher sheet

6 Scatter graphs and lines of best fit

2 c Table 1: Strong correlation. Positive at the start. As light intensity increases, the increase in the rate of photosynthesis decreases (so the graph levels off).

Table 2: Strong correlation. Negative at the start. As time increases, the rate of the decrease of the concentration decreases (so the graph levels off).

1