GCSE \rightarrow A Level Biology transition

Answers to maths skills practice questions

1 Numbers and units

1 a $1 \mathrm{~kJ}=1000 \mathrm{~J}$, so $4500000 \mathrm{~J}=4500000 / 1000 \mathrm{~kJ}=4500 \mathrm{~kJ} \quad$ b $1 \mathrm{MJ}=1000 \mathrm{~kJ}$, so $4500 \mathrm{~kJ}=$ 4.5 MJ
$21 \mathrm{~m}=10^{9} \mathrm{~nm}$ (there are a billion nanometre in a metre)
$9.0 \times 10^{-8} \mathrm{~m}=9.0 \times 10^{-8} \times 10^{9} \mathrm{~nm}=9.0 \times 10^{-8+9} \mathrm{~nm}=9.0 \times 10 \mathrm{~nm}=90 \mathrm{~nm}$
$1.20 \times 10^{-7} \mathrm{~m}=1.20 \times 10^{-7} \times 10^{9} \mathrm{~nm}=1.20 \times 10^{-7+9} \mathrm{~nm}=1.20 \times 100 \mathrm{~nm}=120 \mathrm{~nm}$
Range $=90 \mathrm{~nm}$ to 120 nm
3 a $10^{11} \quad$ b 10^{12}
c $1000+1000=2000 \quad$ d $100-0.01=99.99$
4 a 10^{1} or 10
b 10^{-3} or 0.001
c 10^{6} or 100000
d $100^{2} \div 100=100$ or 10^{2}
5 a 4 mm b 130 s
c $31300 \mu \mathrm{l} \quad$ d 0.000104 mg
6 a $57 \mu \mathrm{~m} \quad$ b 8.6 L or $8.6 \mathrm{dm}^{3}$
c 68 s
d 0.09 mm

2 Decimals, standard form, and significant figures

$1 \quad 0.0214 \mathrm{~cm}^{2} \quad 0.0218 \mathrm{~cm}^{2} \quad 0.03 \mathrm{~cm}^{2} \quad 0.034 \mathrm{~cm}^{2}$
$2 \quad 12.03 \mathrm{~cm} \quad 12.901 \mathrm{~cm} \quad 22 \mathrm{~cm} \quad 22.003 \mathrm{~cm} \quad 22.25 \mathrm{~cm}$
3 a $3.06 \times 10^{3} \mathrm{~kJ}$ b $1.4 \times 10^{5} \mathrm{~kg}$
c $\quad 1.8 \times 10^{-4} \mathrm{~m}$
d $4 \times 10^{-6} \mathrm{~m}$

4 a 1×10^{2}
b 1×10^{4}
c 1×10^{-2}
d 2.1×10^{7}
5 Give the following as decimals.
a 1000000
b 4700000000
c 1200000000000
d 0.000796
$6 \quad$ a $7600 \mathrm{~g} / 7640 \mathrm{~g}$
b $28 \mathrm{~m} / 27.5 \mathrm{~m}$
c $4.3 \mathrm{~g} / 4.33 \mathrm{~g}$
d $6.0 \times 10^{2} \mathrm{~m} / 5.00 \times 10^{2} \mathrm{~m}$
$7 \quad 1.2 \times 10^{4} \mathrm{~g}$

3 Working with formulae

$1 M$? $\quad I=6.6 \mathrm{~mm} \quad O=165 \mu \mathrm{~m}$
Change to same units: either both mm or both $\mu \mathrm{m}$ or both $\mathrm{m}: 165 \mu \mathrm{~m}=0.165 \mathrm{~mm}$
$M=/ / O=6.6 / 0.165=\times 40$

2 Area $=0.5 \times 2 \mathrm{~cm} \times 9 \mathrm{~cm}=9 \mathrm{~cm}^{2}$
3 Area $=\pi r^{2}=\pi \times(0.7 \mu \mathrm{~m})^{2}=\pi \times\left(0.7 \times 10^{-6} \mathrm{~m}\right) \times\left(0.7 \times 10^{-6} \mathrm{~m}\right)=1.5 \mu \mathrm{~m}^{2}$
$4 \quad N_{0}=24$
7 days $=7 \times 24$ hours $=168$ hours
so $n=168 \div 20=8.4$
$\mathrm{Nt}=24 \times 28.4=8107$ cells
$5 \mathrm{~N}=96+4+22+3=125$ animals found
so $D=1-\sum\left(\frac{n}{N}\right)^{2}$
inner brackets:

$$
D=1-\left(\left(\frac{96}{125}\right)^{2}+\left(\frac{4}{125}\right)^{2}+\left(\frac{22}{125}\right)^{2}+\left(\frac{3}{125}\right)^{2}\right)
$$

indices: $D=1-\left(0.768^{2}+0.032^{2}+0.176^{2}+0.024^{2}\right)$
addition: $\mathrm{D}=1-0.6224=0.3776=0.38$ (2.d.p)
$6 \quad O=0.1 \mathrm{~mm} \quad I=? \quad M=50 \quad I=M \times O=50 \times 0.1 \mathrm{~mm}=5 \mathrm{~mm}$
7 Area $=5.3 \mathrm{~cm}^{2} \quad$ radius? $\quad A=\pi r^{2}$
$5.3=\pi r^{2} \quad r^{2}=\frac{5.3}{\pi}=1.687 \quad r=\sqrt{1.687}=1.3 \mathrm{~cm}$
Or $A=\pi r^{2} \quad r^{2}=\frac{A}{\pi} \quad r=\sqrt{\frac{A}{\pi}} \quad r=\sqrt{\frac{5.3}{\pi}}=1.3 \mathrm{~cm}$
$8 \quad 7.25 \times 10^{-6} \mathrm{~m}(7.25 \mu \mathrm{~m})$
$9 \quad a=\frac{\left(\frac{34}{100}\right) \times 135}{2}=22.95$
10 cardiac output $=$ stroke volume \times heart rate
stroke volume $=\frac{2.7}{77}=0.035 \mathrm{dm}^{3}$
11 Substitute in the known values: $0.84=\frac{\text { biomass transfer }}{25} \times 100$
Rearrange the equation to give: \quad biomass transfer $=\frac{0.84}{100} \times 25=0.21 \mathrm{~kg}$

4 Magnification

1 a $\times 120$
b $\times 600$
2×26000
$30.88 \mu \mathrm{~m}$

5 Percentages and uncertainty

1 a $\frac{2240}{3600000} \times 100=0.06 \%$ b $\frac{480}{3600000} \times 100=0.013 \%$
2 5.88\%
3

Sucrose conc. / $\mathbf{m o l ~ \mathbf { d m } ^ { - 3 }}$	Initial mass / g	Final mass / g	Mass change / \mathbf{g}	Percentage change in mass
0.9	1.79	1.06	-0.73	-40.8%
0.7	1.86	1.30	-0.56	-30.1%
0.5	1.95	1.70	-0.25	-12.8%
0.3	1.63	1.76	+0.13	$+8.0 \%$
0.1	1.82	2.55	+0.73	$+40.1 \%$

4
5

Measurement made	Equipment used	Absolute error	Relative error
Length of a fluid column in a respirometer is 6 mm	mm scale	0.5 mm	$\frac{0.5}{6} \times 100=8.3 \%$
Volume of a syringe is $12 \mathrm{~cm}^{3}$ of liquid	$0.5 \mathrm{~cm}^{3}$ divisions	$0.25 \mathrm{~cm}^{3}$	$\frac{0.25}{12} \times 100=2.1 \%$
Change in mass of 1.6 g	balance with 2 d.p.	0.005 g	$\frac{0.005 \times 2}{1.6} \times 100=0.6 \%$

6 Scatter graphs and lines of best fit

2 c Table 1: Strong correlation. Positive at the start. As light intensity increases, the increase in the rate of photosynthesis decreases (so the graph levels off).
Table 2: Strong correlation. Negative at the start. As time increases, the rate of the decrease of the concentration decreases (so the graph levels off).

